4.2: Graphs of Exponential Functions

- Vertical shift and reflection over x-axis moves the horizontal asymptote.
- The y-intercept is affected by horizontal/vertical shift, vertical stretching/shrinking and reflection over x-axis.
- When an exponential function is transformed, the domain of the resulting function is always $(-\infty, \infty)$ but the range of the resulting function gets affected by vertical shift and reflection over x-axis.
- The horizontal asymptote helps us find the range.
- Reflection over y-axis determines which end behavior is a growth and which one is converging to the asymptote.
- Let $f(x)=a b^{c x+d}+e$. Then the graph of $f(x)$ can be obtained from $g(x)=b^{x}$ by the following
- a shift to right/left of $|d|$ units,
- a horizontal stretching/shrinking of ratio $|c|$.
- if $c<0$, a reflection over y-axis.
- a vertical stretching/shrinking of ratio $|a|$.
- if $a<0$, a reflection over x-axis.
- a vertical shift of $|e|$ units.
- The resulting function's horizontal asymptote is $y=e$.
- The function's range is (e, ∞) if $a>0$. Its range is $(-\infty, e)$ if $a<0$.

Another Method of Graphing

- Find if the function is a decay or growth. That is, find the overall shape of the graph:

- Find the horizontal asymptote by finding the shift up or down.
- Find the y-intercept. In a later section, we discuss finding x-intercept.

1. Consider the function $f(x)=(0.2)(2)^{-2 x+3}-3$.
(a) Graph the function.
(b) What is the horizontal asymptote of the graph?
(c) What is the y-intercept?
(d) Find the range of the function.

2. Consider the function $f(x)=-2 e^{2 x-3}+1$.
(a) Graph the function.
(b) What is the horizontal asymptote of the graph?
(c) What is the y-intercept?
(d) Find the range of the function.

