- Vertical shift and reflection over *x*-axis moves the horizontal asymptote.
- The *y*-intercept is affected by horizontal/vertical shift, vertical stretching/shrinking and reflection over *x*-axis.
- When an exponential function is transformed, the domain of the resulting function is always $(-\infty, \infty)$ but the range of the resulting function gets affected by vertical shift and reflection over *x*-axis.
- The horizontal asymptote helps us find the range.
- Reflection over *y*-axis determines which end behavior is a growth and which one is converging to the asymptote.
- Let $f(x) = ab^{cx+d} + e$. Then the graph of f(x) can be obtained from $g(x) = b^x$ by the following
 - a shift to right/left of |*d*| units,
 - a horizontal stretching/shrinking of ratio |*c*|.
 - if *c* < 0, a reflection over *y*-axis.
 - a vertical stretching/shrinking of ratio |a|.
 - if *a* < 0, a reflection over *x*-axis.
 - a vertical shift of |*e*| units.
- The resulting function's horizontal asymptote is y = e.
- The function's range is (e, ∞) if a > 0. Its range is $(-\infty, e)$ if a < 0.

Another Method of Graphing

• Find if the function is a decay or growth. That is, find the overall shape of the graph:

- Find the horizontal asymptote by finding the shift up or down.
- Find the *y*-intercept. In a later section, we discuss finding *x*-intercept.

- 1. Consider the function $f(x) = (0.2)(2)^{-2x+3} 3$.
 - (a) Graph the function.
 - (b) What is the horizontal asymptote of the graph?
 - (c) What is the *y*-intercept?
 - (d) Find the range of the function.

- 2. Consider the function $f(x) = -2e^{2x-3} + 1$.
 - (a) Graph the function.
 - (b) What is the horizontal asymptote of the graph?
 - (c) What is the *y*-intercept?
 - (d) Find the range of the function.

